

Bearing the brunt of environmental change: understanding climate adaptation and transformation challenges in African cities.

Land Cover Change and Demographic Growth: an Estimation of Dar es Salaam's Population Using Remote Sensing

16-17 April 2013

Luca CONGEDO¹, Michele MUNAFÒ², Silvia MACCHI¹

¹DICEA - Department of Civil, Building and Environmental Engineering, Sapienza University of Rome

²ISPRA - Italian Institute for Environmental Protection and Research

ing.congedo.luca@gmail.com

The ACC Dar Project

 Project aim: investigate urban vulnerability to Climate Change (CC) in coastal Dar es Salaam (Tanzania)

 Activity 2.1: develop methodologies for monitoring changes in peri-urban settlements using remote sensing

Land Cover Change and Demographic Growth: an Estimation of Dar es Salaam's Population Using Remote Sensing

Land Cover Change and Vulnerability to CC

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Land Cover Change and Vulnerability to CC

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

This Study

- A method of demographic estimation through remote sensing
- Hypothesis: Land Cover Change in Dar es Salaam is related to demographic growth
- Thesis: demographic growth can be estimated by monitoring Land Cover (LC) through remote sensing

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Land Cover Classification

- Data: Landsat images (provided for free by the USGS)
- Spatial resolution: 30m
- Classification methodology: supervised semi-automatic
- Identified LC classes:
 - "Continuously Built-up", a densely developed class
 - "Discontinuously Built-up", an urbanized class with low-density development
 - "Soil", bare soil or sparse vegetation
 - "Full Vegetation", very green and abundant vegetation (mainly trees)
 - "Mostly Vegetation", a less green class of vegetation (typically grass and brush)
 - "Water"

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Land Cover Change from 2002 to 2011

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Population Estimation Workflow

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Household data

- 2011 Household Survey, under Activity 1.1 of the project
- 5860 households interviewed and georeferenced with GPS
- 20 households counted between each interviewed household
- The distance between two interviewed households varies with household density

Interviewed Household

Counted Household

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Household Estimation

- Assumption: the household density around a given interviewed household is inversely proportional to the distance between that interviewed household and the next one in the sample
- It is then possible to calculate the average household density per LC class ($\bar{\rho}_i$) in relation to the distance (GIS spatial analysis)
- Estimation of households in Dar es Salaam =

Average Household Density x LC Class Area

Land Cover Class	Household Estimate	
Continuously Built-up	$ar{ ho}_{ m Continuously Built-up}*Area_{ m Continuously Built-up}$	
Discontinuously Built-up	$ar{ ho}_{ m Discontinuously Built-up} * Area_{ m Discontinuously Built-up}$	
Soil		
Full Vegetation	ā i Amar	
Mostly Vegetation	$\rho_{\rm Soil}*Area_{\rm Discontinuously Built-up}$	
Water		

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Household Estimation: Results

- Assumption: average household densities did not change over the years considered
- Household estimation in Dar es Salaam for 2002 and following years

Land Cover Class	Area [ha]	Average Household Density [household/ha]	Estimated Households
Continuously Built-up	8,365.5	31.11	260,251
Discontinuously Built-up	8,032.0	17.56	141,043
Soil	8,032.0	13.78	110,682
			Total 511,975

Comparison between estimates and census data: ±15%

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing 16-17/04/13

Page 11

Population Estimation

- Estimation of population in Dar es Salaam =
 Estimated Households x Average Household Size
- Average Household Size (National Bureau of Statistics, 2013)
 - Dar es Salaam 2002 = 4.2
 - Dar es Salaam 2012 = 4.0
- Average Household Size

Year	Average Household Size
2002	4.20
2004	4.16
2007	4.10
2009	4.06
2011	4.02

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Population Estimation: Results

- Population estimates in Dar es Salaam from 2002 to 2011
- Comparison between estimates and census: margin of error $\pm 15\%$
- Comparison between estimates and projections

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Population Estimation: Results at Municipal Level

Comparison between estimate and census: margin of error ±25%

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Limits of This Method

- Margin of error ±15% at city level and ±25% at municipal level
- Spatial resolution and accuracy of LC classifications
 - LC classifications do not distinguish land uses, which can have different population densities
- The relationship between LC and population depends on the specific development of the city
- Influenced by variations over time of:
 - Average Household Density
 - Average Household Size

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Advantages of This Method

- Rapid and affordable demographic estimation
- Valuable alternative to traditional census, which has low frequency given the growth rate of Dar es Salaam
- Valuable alternative to projections, especially when growth is rapid or unexpected, or when census data is outdated

Conclusions

 Urban Sprawl "happens when population growth and the physical expansion of a city are misaligned" (UN-Habitat, 2010, p.10)

Other drivers also cause urban sprawl in Dar es Salaam, and this affects the reliability of this estimation method.

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing

Thank you

References:

- UN-Habitat, 2010. State of the World's Cities 2010/2011: Bridging the Urban Divide. London, UK: Earthscan.
- United Republic of Tanzania, 2006. Dar es Salaam Regional and District projections. Dar es Salaam: National Bureau of Statistics, Ministry of Planning, Economy and Empowerment.
- United Republic of Tanzania, 2013. 2012 Population and Housing Census: Population Distribution by Administrative Areas, Dar es Salaam: National Bureau of Statistics, Ministry of Finance.

Land Cover Change and Demographic Growth: an Estimation of Population in Dar es Salaam Using Remote Sensing