

International Workshop

TOWARDS SCENARIOS FOR URBAN ADAPTATION PLANNING Assessing seawater intrusion under climate and land cover changes in Dar es Salaam, Tanzania

Session 1. Monitoring Urban Environmental Changes: Seawater

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER

SAPIENZA UNIVERSITÀ DI ROMA

Rome, 22th April 2013

OF APULIA REGION

intrusion

Maria Dolores FIDELIBUS

Politecnico di Bari

+39 0805963373

Eemail d.fidelibus@poliba.it

Working on conceptual models....

Truth is much too complicated to allow anything but approximations"

John von Neumann, quoted in

Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, by Manfred Schroder

Simplicity is the ultimate sophistication.

Leonardo da Vinci

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

Topics

- Coastal aquifers: study of groundwater salinization
 - Conceptual modelling
- Looking for groundwater dynamics and source of salts
 - Temperature and Electrical Conductivity logs
 - Hydraulic measures
 - Geochemical approach

Selecting the suitable conceptual model

Coastal karst aquifer

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

Murge and Salento karstic coastal aquifers Schematic geological map

22th April 2013

Murgia and Salento karstic coastal aquifers Structural features

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

Murgia and Salento carbonate karstic coastal aquifers: piezometric map (m a.msl)

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

Monitoring net (1st Level)

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

Monitoring periods: I) 1995-1996; 2) winter 2007 \rightarrow end 2010

Dataset 1995-1996: no. 428 temperature (and EC, pH, Eh and O₂) profiles (107 wells x 4 profiles) Selected time horizon for geostatistical study: 107 profiles of winter 1995

MONITORING SEAWATER INTRUSION IN THE **COASTAL AQUIFER OF APULIA REGION**

CLUSTER ANALYSIS

The temperatures measured respectively at -5, -20, -30, -50, -70, -85, and -100 m AMSL, constitute no. 7 datasets.

The basic statistical analysis of each sub-set showed frequency distributions of bimodal type of the variable Temperature, indicating the presence of at least two distinct groups.

Cluster analysis, based on EC and T, allowed recognizing two main data populations, corresponding to the two contiguous aquifers.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

VARIOGRAMS

MURGE -20 m a.s.I Direction: 135 Tolerance: 30

Variogram map

MURGE -20 m a.s.l

Direction: 45 Tolerance: 30

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

Horizontal temperature section at -5 m a msl

22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

Temperature at Main anisotropy axis -20 m asl direction Murge: NW-SE (N135E) Salento: WNW-ESE (N115E) 22 21.5 21 20.5 20 19.5 19 18.5 18 17.5 17 16.5 16 T (°C) 15.5 15 14.5 14

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

22th April 2013

Vertical temperature sections

Thermal vertical section obtained by OK of data from profiles and horizontal OK grids. The main vertical anisotropy axis has an inclination of 85°.

Groundwater flows horizontally through nearly vertical structures, which allow hydraulic connection between Murge and Salento.

Water balance studies indicate that Murgia aquifer recharges laterally the aquifer Salento with about 10 m³/s.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

TDS (g/l) -5 m s.l.m.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

TDS (g/l) -20 m s.l.m.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

TDS (g/l) -35 m s.l.m.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

TDS (g/l) -50 m s.l.m

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

TDS (g/l) -70 m s.l.m

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

TDS (g/l) -85 m s.l.m

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

TDS (g/l) -100 m s.l.m.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

Observation wells (Lago Rosso e Surbo) in Salento Peninsula

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

Environmental head

In a well completely screened in a phreatic groundwater, the distribution of water in depth mirrors the distribution of the groundwater in the aquifer.

The hydraulic head that can be measured in such conditions coincides with the *Environmental Head* or local Head h_a defined by Lusczynski

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

TDS profiles 1974 and 1996

MONITORING SEAWATER INTRUSION IN THE **COASTAL AQUIFER OF APULIA REGION**

22th April 2013

Scheme of parameters, which can be obtained by an EC profile

1/1/00

1/1/00

1/1/00

1/1/00

1/1/05

1/1/05

1/1/05

1/1/10

1/1/10

1/1/10

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

1/1/05 1/1/10

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

COASTAL AQUIFER OF APULIA REGION

Theoric interface

Theoric interface indicates that the aquifer is subject to over-exploitation

Fresh water column and salt water column are virtual:

True salinity is shown by profiles

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

OW LR

COASTAL AQUIFER OF APULIA REGION

Mechanism of salinization induced by overexploitation

22th April 2013

Page 42

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

Scheme of an observation well for the monitoring of freshwater-seawater equilibrium

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

ORIGIN OF SALINIZATION

Groundwater salinisation may derive, beside from seawater intrusion, either from *other natural salt sources* or from *human impact*.

Human impact

> Irrigation practices and land use

> Infiltration of polluted or saline surface waters (rivers, ponds, lagunes, salt works)

> Infiltration from landfills or injection of municipal wastewaters......

Natural salt sources:

- Present seawater
- > Salt waters of marine origin
- Evaporite salts
- Sea spray....

Salt waters

Simplified geological map : 1:Limestone and dolomitic limestones (Cretaceous); 2: Calcarenites and marly calcarenites (Miocene); 3: Calcarenites, sands and clays (Pliocene-Quaternary). Traces of geological section.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

How to recognize other sources of salinization?

The deviation from non-reactive mixing (dilution line) can be due either to

 the water-rock interaction processes triggered by mixing process

or to

• the intervention of a salt source or a saline fluid of marine origin chemically different from present seawater.

In most cases water-rock interactions overlap the effects of more than one salt source

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

Sr/Cl ratio of saline waters is mostly higher than modern seawater: carbonate rock-water interaction is the main source of Sr, which can be used as relative age tracer.

• Li/Cl is highest in thermal waters confirming to be a useful pathfinder for hydrothermal systems

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION 22th April 2013

• Saline waters show ¹⁴C activities lower than those found in recent seawater. These differences may indicate both *age variations and chemical interaction with the host rock*.

• Salt waters have δ^{13} C values either depleted or enriched with respect to recent seawater:, indicating contributions from dissolution of marine carbonates, organic carbon and sulphate reduction.

• Determination of the real age is complicated by several possible sources of carbon that influence the ¹⁴C values, *besides the process of decay*.

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

MONITORING SEAWATER INTRUSION IN THE COASTAL AQUIFER OF APULIA REGION

22th April 2013

A never ending process...

22th April 2013Date