

International Workshop

TOWARDS SCENARIOS FOR URBAN ADAPTATION PLANNING Assessing seawater intrusion under climate and land cover changes in Dar es Salaam, Tanzania

HOMOGENEOUS & NON-HOMOGENEOUS HIDDEN MARKOV DOWNSCALING MODEL FOR PROJECTION OF HYDROCLIMATE CHANGES IN TANZANIA

Rome, 20/04/2013

SAPIENZA UNIVERSITÀ DI ROMA

FRANCESCO CIOFFI, ALESSANDRO MONTI & UPMANU LALL

University of Rome "La Sapienza" & Columbia University (New York)

phone: +393407714932

Mail : francesco.cioffi@uniroma.it

Objective

✓ to estimate the precipitation pattern changes under global warming scenarios in Der er Salam (Tanzania) coastal region

Framework

✓ Vulnerability, Resilience and Adaptation to climate change, i.e to quantify the impact, beyond the existing anthropic ones, of hydro-climatic changes on surface and deep water bodies (floods, droughts, salt intrusion,....)

Why is so difficult to evaluate changes in precipitation?

- ✓ To evaluate the effects of climate change on precipitation the main tools are GCMs (General Circulation Models)
- ✓ GCMs is supposed to represent almost well the large scale structure of meteorological variables but GCM's have poor spatial resolution (150x150 km) which does not allow to take into account local effects, as those due to orography. Since precipitation are affected by local orography, rainfall is poorly represented in GCM's; simulations are affected by strong biases.
- ✓ To overcome these drawbacks downscaling methods have been proposed

Dynamic Downscaling Models (DDM)

Statistical Downscaling Models (STM)

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

- ✓ DDMs are based on RCMs (Regional Circulation Models)
- ✓ RCMs are supposed to improve the spatial resolution by using models on a limited region of Earth
- ✓ RMCs impose boundary conditions coming from CGMs
- ✓ RMCs require very powerful computers and long computational time
- ✓ Spatial resolution is better (25x25 Km) but still poorly in capturing local effects.
- ✓ Bias corrections are needed to fit observations.

SDMs

✓ SDMs try to find stochastic relationship between large scale atmospheric circulation (i.e meteorological variables which are supposed to be well simulated by GCMs or RCMs) and measured local rainfall characteristics (frequency and intensity).

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

SDMs VS DDMs

- ✓ SDMs do not require powerful computer
- ✓ SDMs are able to capture local effects by parameters of statistics
- ✓ a deterministic link is obtained between large scale atmospheric circulation and local phenomena

Among the existing SDMs, Homogeneous Markov Model (HMM) and Non-Homogeneous Markov Model (NHMM) appear to be the most promising since they are particularly efficient in the treatment of discrete variables like precipitations

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

In the current presentation we explore the potentiality of **HMM & NHMM** to simulate the precipitation pattern in Tanzania and we show the proposed approach is able to:

Capture the main characteristics of rainfall pattern typically occurring in East Africa

 identify the large scale atmospheric circulation patterns affecting local precipitations

simulate with considerable accuracy frequency and intensity of precipitations in Tanzania region

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Data

Туре;	Daily Rainfall Spells
N. of Stations;	11
Time Period;	from 1950 to 1990
Dataset;	KNMI Climate Explorer

Stations location in Tanzania (data info)

	ON MAP	CODE/NAME	LATITUDE	LONGITUDE
1	S1	TZ000063729 BUKOBA	-1.33N	31.82E
2	S2	TZ000063733 MUSOMA	-1.50N	33.80E
3	S3	TZ000063756 MWANZA	-2.47N	32.92E
4	S4	TZ000063789 ARUSHA	-3.33N	36.63E
5	S5	TZ000063790 MOSHI	-3.35N	37.33E
6	S6	TZ000063791 KILIMANJARO_AIRPORT	-3.42N	37.07E
7	S7	TZ000063816 SAME	-4.08N	37.72E
8	S8	TZ000063832 TABORA_AIRPORT	-5.08N	32.83E
9	S9	TZ000063862 DODOMA	-6.17N	35.77E
10	S10	TZ000063887 IRINGA	-7.63N	35.77E
11	S11	TZ000063894 DAR_ES_SALAAM_AIRPO	-6.87N	39.20E

Stations location in Tanzania (on Map)

Giuseppe Faldi, 2010. "Valutazione della vulnerabilità al cambiamento climatico delle comunità costiere di Dar es Salaam (Tanzania) rispetto al fenomeno dell'intrusione salina nella falda acquifera". Dissertation. (modified)

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Theory

The **HMM** assumes that observations are generated from a mixture of distributions among which subjects move according to a hidden Markov chain, and that rainfall occurrence is governed by a few discrete states, with Markovian daily transitions between them. HMM used here follows the approach of the (Hughes and Guttorp, 1994) to model daily rainfall occurrence, while additionally modeling rainfall amounts (Robertson et al. 2004-2006).

In **NHMM** the transition probabilities are allowed to vary with time, and so it generalizes the homogeneous HMM. In particular for downscaling applications, the transition probabilities between states are allowed to vary as a function of external inputs (i.e. these variables, Xk,t, can influence the evolution of the weather states sequence, Z).

Legend:

Zn;	transition probabilities (no stationary) Hidden States
Un;	external inputs
Xn;	observed data
K;	the number of Hidden States
σ and ρ;	parameters to be estimated

Homogeneous Hidden Markov **Von-Homogeneous Hidden Markov**

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

BIC

Chow Liu (CL) VS Conditional Independence (CI)

The comparison between **CL** and **Cl** is made calculating, for **Hidden States** from 2 to 10 and for two different Density Probability Functions (**Gamma and Exponential**), the Bayesian Information Criterion (BIC) and the Log-Likelihood. All analysis is annually run for 1950-1990 period considering 11 Rainfall Stations.

	HMM-CL		HMM-CI	
	Log-Likelihood	BIC	Log-Likelihood	BIC
1950-1990	-154632	314541	-161622	325533

The Table represents data from CL / Gamma & Cl / Gamma for 5 Hidden States

Log-Likelihood

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Five Hidden States for Annual period

"Occurrence" and the mean "Amounts" of days receiving greater than zero rainfall calculated from the parameters of the Gamma distribution (Annual period from 1950 to 1990 for 11 stations in Tanzania).

The **Hidden State** could be physically read as a particular rainfall pattern the can sudden in the area. (see the legend)

ACC DAR 1950-1990 Viterbi Sequence (5 hs 100 state state 2 90 state 3 state 4 state 5 70 100 150 200 250 300 350 days The figure above represents the State Occurrence during year. There are significant seasonal variations during the year typically occurring in East Africa. Legend State 1: Wet Homogeneous State 2: Coastal Wet Non-Homogeneous State 3: Inland Wet Non-Homogeneous State 4:

Very Wet Homogeneous

State 5: Dry Homogeneous

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Date : 20-04-2013

35

longitude

35

longitude

Interpretation of the HMM States and Choosing <u>Predictor/s</u> GPH at 1000 hPa

The Rainfall States provide a **diagnostic** of Large Scale Weather Conditions. Composites fields, with respect to the Annual climatological mean of the days assigned to each state, are obtained for Geo-potential Height (GPH), Temperature (T) at 1000 hPa, Meridional Winds (MW) at 850 hPa, Zonal Winds (ZW) at 850 hPa and Zonal Equator Winds (ZEW) . These fields show that GPH,T, ZW, ZEW, MW and their appropriate combinations can be used as predictors in NHMM.

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Interpretation of the HMM States and Choosing ACC DAR **Predictor**/s T at 1000 hPa

The Rainfall States provide a **diagnostic** of Large Scale Weather Conditions. Composites fields, with respect to the Annual climatological mean of the days assigned to each state, are obtained for Geo-potential Height (GPH), Temperature (T) at 1000 hPa, Meridional Winds (MW) at 850 hPa, Zonal Winds (ZW) at 850 hPa and Zonal Equator Winds (ZEW) . These fields show that GPH, T, ZW, ZEW, MW and their appropriate combinations can be used as predictors in NHMM.

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Interpretation of the HMM States and Choosing ACC DAR **Predictor**/s MW & ZW at 850 hPa

The Rainfall States provide a **diagnostic** of Large Scale Weather Conditions. Composites fields, with respect to the Annual climatological mean of the days assigned to each state, are obtained for Geo-potential Height (GPH), Temperature (T) at 1000 hPa, Meridional Winds (MW) at 850 hPa, Zonal Winds (ZW) at 850 hPa and Zonal Equator Winds (ZEW) . These fields show that GPH, T, ZW, ZEW, MW and their appropriate combinations can be used as predictors in NHMM.

State 3 All Year Meridional & Zonal Winds 850 hP

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Longitude

30

35

40

Date : 20-04-2013

Interpretation of the HMM States and Choosing ACC DAR **Predictor**/s ZEW from 10 to 1000 hPa

The Rainfall States provide a **diagnostic** of Large Scale Weather Conditions. Composites fields, with respect to the Annual climatological mean of the days assigned to each state, are obtained for Geo-potential Height (GPH), Temperature (T) at 1000 hPa, Meridional Winds (MW) at 850 hPa, Zonal Winds (ZW) at 850 hPa and Zonal Equator Winds (ZEW) . These fields show that GPH, T, ZW, ZEW, MW and their appropriate combinations can be used as predictors in NHMM.

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania

Date : 20-04-2013

30 years as "Learn" phase and 10 years as "Simulation" along all year. HMM represents a basement in comparing with predictors obtained from NHMM elaborations.

Total Amount Seasonal Rainfall

Dry Season – (JJAS)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Calibration & Validation

30 years as "Calibration" phase and 10 years as "Validation" ones along all year. Significant rainfall statistical indices calculated from HMM and NHMM simulations are compared

Total Wet Days

Dry Season – (JJAS)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Dry Season – (JJAS)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

comparison of observed and simulated rainfall indices validation period 1981-1990 er=10.3978

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Total Amount Seasonal Rainfall

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Total Wet Days

Wet Season – (MAM)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

90th Percentile

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Total Amount Seasonal Rainfall

Wet&Dry Season – (OND)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Total Wet Days

Wet&Dry Season – (OND)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

90th Percentile

Wet&Dry Season – (OND)

HMM

NHMM – T&GPH

NHMM – T&GPH&ZEW

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Rainfall Spell S4

Wet Season – (MAM)

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Rainfall Spell S4

Wet Season - (MAM)

homogeneous & non-homogeneous hidden markov downscaling model for projection of hydroclimate changes in tanzania Date : 20-04-2013

Conclusions

- ✓ the annual precipitation pattern over Tanzania, by using HMM-CI, is reasonably well reproduced
- Physically significant 5 Weather States have been well identified by using HMM-CI
- ✓ GPH1000 (SLP), together with T1000 (SST) and EZW resulted to be the best candidate as predictors
- ✓ NHMM improves simulation results if compared with simple HMM well capturing the seasonal trend of precipitation in East Africa
- ✓ Work is in progress to analyze different future global warming scenarios (CMIP5 dataset)

References

A. Robertson, S. Kirshner and P. Smyth, 2004. "Downscaling of Daily Rainfall Occurrence over Northeast Brazil Using a Hidden Markov Model". Journal of Climate, 17, 4407-4424.

S. Kirshner, 2005. "Quick Start Manual for the MVN-HMM Toolbox". Donald Bren School of Information and Computer Science University of California, Irvine.

S. Kirshner, 2005. "Modeling of Multivariate Time Series Using Hidden Markov Models". Dissertation, University of California, Irvine

E. Bellone, J.P. Hughes and P. Guttorp, 2000. "A Hidden Markov Model for Downscaling Synoptic Atmospheric Patterns to Precipitation Amounts". Climate Research, 15, 1-12

H. H. Kwon, U. Lall and J. Obeysekera, 2008. "Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for South *Florida*". Stoch Environ Res Risk Assess, 23, 879-896.

A.F. Khalil , H. H. Kwon , U. Lall and Y. H. Kaheil, 2010. "Predictive downscaling based on non-homogeneous hidden Markov models". Hydrological Sciences Journal, 55:3, 333-350

S. Kirshner, P. Smyth and A. W. Robertson, 2012. "Conditional Chow-Liu Tree Structures for Modeling Discrete-Valued Vector Time Series". Proceeding UAI '04 Proceedings of the 20th conference on Uncertainty in artificial intelligence, 317-324

A. Monti, 2012. "Vulnerability, Resilience and Adaptation of Coastal Regions to Climate Change: Hydrological Changes in Agro-Pontino region by using the non-Homogeneous Hidden Markov Model". Thesis, Sapienza University of Rome, Italy.