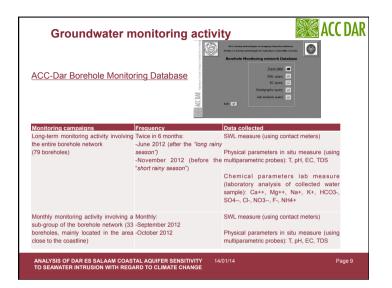
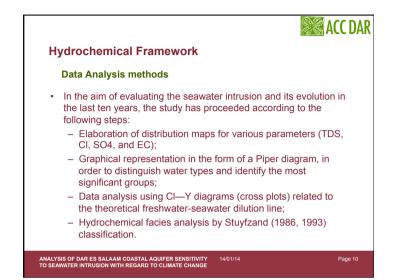
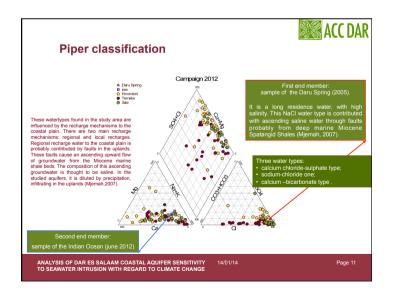

acc dar

Goals and scope

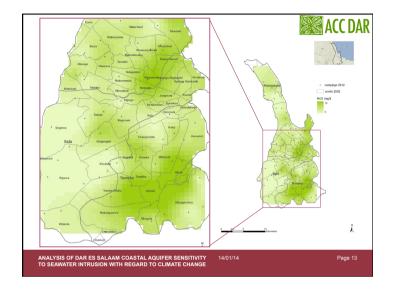
- The overall objective of this study is to explore the current degree of seawater intrusion into Dar es Salaam's coastal aquifer, and its relationships with climatic conditions and urbanization processes, in order to identify the areas of the city with the highest priority for adaptation action implementation.
- Identification of the relationships with environmental parameters, related to climate variability, and anthropogenic factors, related to changes in land cover and the population's water demand, is expected to provide the knowledge base with which to develop future scenarios of the aquifer's sensitivity to the phenomenon, in terms of the future evolution of both seawater intrusion and groundwater availability for municipal water supply.

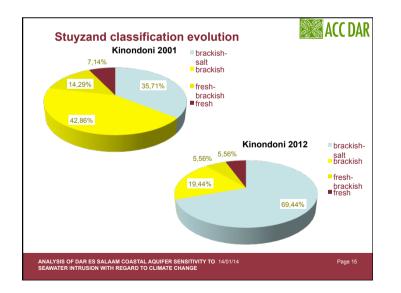

Page

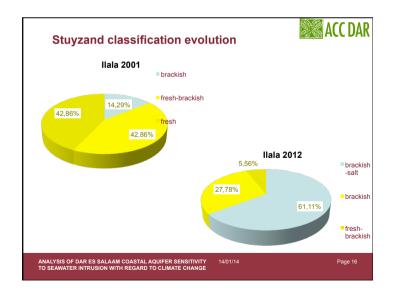


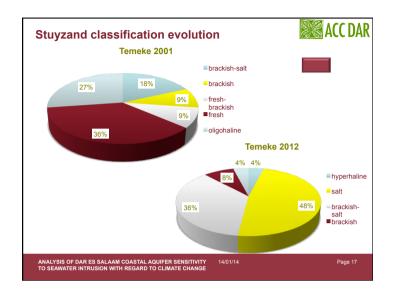


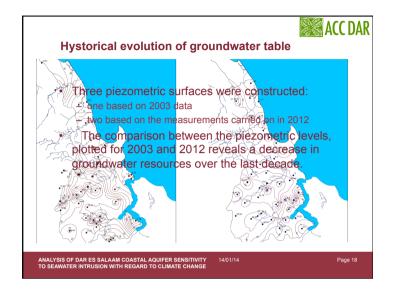
quaternary sed conductivity that	iments, as the	quaternary de g and surroundi	posite	e coastal plain in the s have higher hydraulic iocene sequence, which
AQUIFER	PERIOD	EPOCH		LITHOLOGY
Unconfined	Quaternary	Pleistocene recent	to	Fine sand to medium sand with silts and clay, coral reef limestone and calcareous, alluvial clay, silts and gravels
Aquitard	Quaternary	Pleistocene recent	to	Clay, sandy clay (clay)
Semiconfined Aquifer	Quaternary	Pleistocene recent	to	Medium to Coarse sand and gravels with clay
Aquitard	Neogene	Mio-pliocene		Clay-bound sands

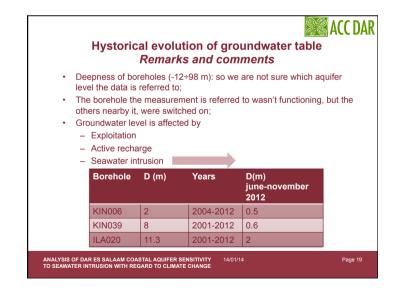

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	June 2012	Nov 201
G (mas)	32	6	52	15	8	6	5	4	1	54	0
depth	32	6	51	15	8	6	5	4	1	33	0
SW m	32	6	51	15	8	6	5	4	1	79	0
T C°	0	0	0	0	0	0	2	1	0	79	0
pH	32	6	52	15	8	6	5	4	1	79	0
EC uS/cm	32	6	52	15	8	6	5	4	1	79	0
Total Fitrate Residue mg/l	1	0	12	6	7	4	4	0	0	0	0
TDS mg/l	0	0	0	0	0	0	2	2	1	0	0
Carbonate Hardness mg CaCO3/	7	6	12	6	7	4	3	2	1	0	0
Non Carbonate Hardness mg CaCO3/	30	5	39	10	4	5	3	3	1	0	0
Ca mg/l	32	6	52	15	8	6	5	4	1	79	71
Mg mg/l	32	6	52	15	8	6	5	4	1	79	70
Na mg/l	32	6	52	15	8	6	5	4	1	79	70
K mg/l	32	6	52	15	8	6	5	4	1	79	70
Fe mo/l	26	5	47	15	8	4	5	3	1	0	0
Mn mg/l	25	5	21	10	7	2	4	2	0	0	0
NO3 mg/l	26	4	45	12	8	6	5	4	1	79	71
CI mg/l	32	6	52	15	8	6	5	4	1	79	71
SO4 mg/l	32	6	52	15	8	6	5	4	1	79	71
PO4 mg/l	30	4	30	15	8	3	5	0	0	0	0
F	0	0	20	0	0	2	2	2	0	0	0
HCO3 mg/l	0	0	0	0	0	0	0	0	0	79	71
CO3 (mg/l)	0	0	0	0	0	0	0	0	0	0	23
Р	0	0	0	0	0	0	0	0	0	0	71
ZN	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0
NH4	0	0	0	0	0	0	0	0	0	0	71
MN	0	0	0	0	0	0	0	0	0	0	0

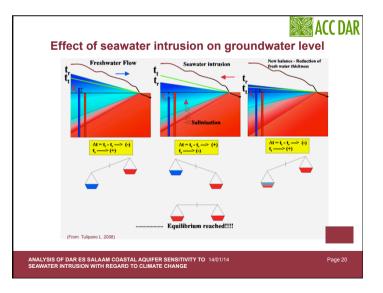


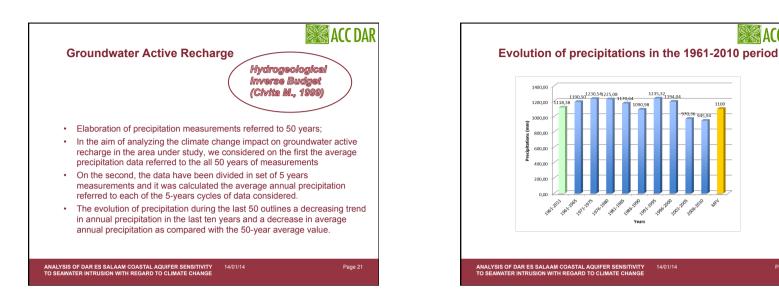


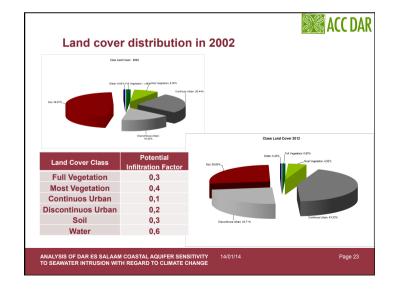


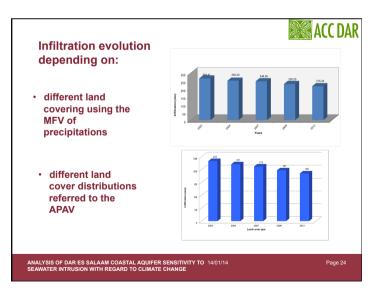


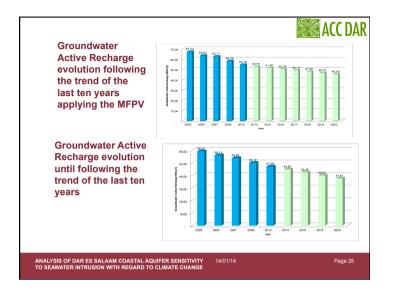

Main type	Stuyf. code	CI ⁻ (mg/l)
very oligohaline	G	< 5
oligohaline	g	5 - 30
fresh	F	30 - 150
fresh-brackish	f	150 - 300
brackish	В	300 - 1000
brackish-salt	b	1000 - 10000
salt	S	10000 - 20000
hyperhaline	н	> 20000

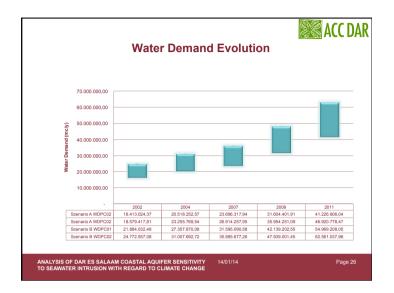


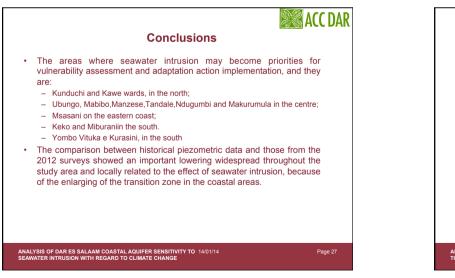


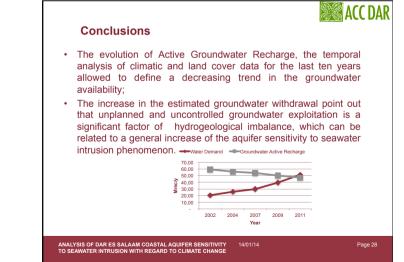












ACC DAR

