

Last experience in Africa (Tunisia, 2008)• SAHARA SUD
PROGRAMME: Projet of
rehabilitation and
creation of datters
palms in Rjim MaâtougImage: Colspan="2">Image: Colspan="2" Image: Colspan="

Overwiew

Target:

To analyze the spatial variation of groundwater salinization in the shallower aquifers by different investigation methods in a coastal area characterized by:

hydrogeological framework complexity

economical, environmental and political issues (e.g. high water demand until overexploitation of groundwater, unauthorized withdrawal)

Methods:

- Vertical electrical soundings
- Hydrogeochemical and Temperature characterization

Conclusions:

✓ Seawater intrusion is multistratum as inflows at two different levels of the aquifers

✓ Two areas registered values result alarming

ACC DAR

Goals and scope

- The overall objective of this study is to explore the current degree of seawater intrusion into Dar es Salaam's coastal aquifer, and its relationships with climatic conditions and urbanization processes, in order to identify the areas of the city with the highest priority for adaptation action implementation.
- Identification of the relationships with environmental parameters, related to climate variability, and anthropogenic factors, related to changes in land cover and the population's water demand, is expected to provide the knowledge base with which to develop future scenarios of the aquifer's Sensitivity to the phenomenon, in terms of the future evolution of both seawater intrusion and groundwater availability for municipal water supply.

Seawater intrusion monitoring 19/08/13 Page 48

Description of the study area

 The study area has a surface of approximately 260 km², which extends along a 40 km stretch of coastline to the north of the City center and is bordered to the east by the Indian Ocean. The western boundary is the Dar es Salaam Plateau, which rises west of the Ocean along the entire study area up to the Pugu Hills.

Motivation	Overall Approach
 Groundwater is the largest reserve of freshwater available worldwide, and thus plays a crucial role in the adaptability of the world population to the effects of climate change on rainfall, soil moisture content, and surface water (Margat, 2006). 	 According to this approach, vulnerability is defined as "the degree to which a system is susceptible to, or unable to cope with, the adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive capacity" (IPCC, 2007).
• Recent IPCC assessment reports have concluded that very little is known about the relationship between groundwater and CC (IPCC, 2001; IPCC, 2007; IPCC, 2008); however it is recognized that CC usually acts as an effects multiplier in already altered hydrogeological systems, with obvious consequences for dependant ecosystems and communities (Appleton, 2003).	 Vulnerability = f (Exposure, Sensitivity, Adaptive Capacity) Exposure: the nature and degree to which a system is exposed to significant climatic variations. Sensitivity: the degree to which a system is affected, either adversely or beneficially, by climaterelated stimuli. The effect may be direct or indirect. Adaptive capacity (in relation to CC impacts): the ability of a natural or human system to adjust to climatechange (including climate variability and extremes) to moderate potential damages, to takeadvantage of opportunities, or to cope with the consequences. (Fussel, 2006)
r intrusion monitoring 19/09/13 Page 49	Seawater intrusion monitoring 19/09/13 Page 5

quaternary sec conductivity tha includes clay in	timents, as the in the underlying tercalations (Mje	quaternary depo and surrounding ema, 2007)	osite g M	s have higher hydraulic iocene sequence, which
AQUIFER	PERIOD	ЕРОСН		LITHOLOGY
Unconfined	Quaternary	Pleistocene recent	to	Fine sand to medium san with silts and clay, coral ree limestone and calcareous alluvial clay, silts and gravels
Aquitard	Quaternary	Pleistocene recent	to	Clay, sandy clay (clay)
Semiconfined Aquifer	Quaternary	Pleistocene recent	to	Medium to Coarse sand an gravels with clay
Aquitard	Neogene	Mio-pliocene		Clay-bound sands

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	June 2012	Nov 2
G (mas)	32	6	52	15	8	6	5	4	1	54	0
denth	32	6	51	15	8	6	5	4	1	33	0
SW m	32	6	51	15	8	6	5	4	1	79	0
T C°	0	0	0	0	0	0	2	1	0	79	0
pH	32	6	52	15	8	6	5	4	1	79	0
EC uS/cm	32	6	52	15	8	6	5	4	1	79	0
Total Fitrate Residue mg/l	1	0	12	6	7	4	4	0	0	0	0
TDS mg/l	0	0	0	0	0	0	2	2	1	0	0
Carbonate Hardness mg CaCO3/	7	6	12	6	7	4	3	2	1	0	0
Non Carbonate Hardness mg CaCO3/	30	5	39	10	4	5	3	3	1	0	0
Ca mg/l	32	6	52	15	8	6	5	4	1	79	71
Mg mg/l	32	6	52	15	8	6	5	4	1	79	70
Na mg/l	32	6	52	15	8	6	5	4	1	79	70
K mg/l	32	6	52	15	8	6	5	4	1	79	70
Fe mg/l	26	5	47	15	8	4	5	3	1	0	0
Mn mg/l	25	5	21	10	7	2	4	2	0	0	0
NO3 mg/l	26	4	45	12	8	6	5	4	1	79	71
CI mg/l	32	6	52	15	8	6	5	4	1	79	71
SO4 mg/l	32	6	52	15	8	6	5	4	1	79	71
PO4 mg/l	30	4	30	15	8	3	5	0	0	0	0
F	0	0	20	0	0	2	2	2	0	0	0
HCO3 mg/l	0	0	0	0	0	0	0	0	0	79	71
CO3 (mg/l)	0	0	0	0	0	0	0	0	0	0	22
P	0	0	0	0	0	0	0	0	0	0	71
ZN	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
NH4	0	0	0	0	0	0	0	0	0	0	71
141.64											

Main type	Stuyf. code	CI ⁻ (mg/l)
very oligohaline	G	< 5
oligohaline	g	5 - 30
fresh	F	30 - 150
fresh-brackish	f	150 - 300
brackish	В	300 - 1000
brackish-salt	b	1000 - 10000
salt	S	10000 - 20000
hyperhaline	н	> 20000

• For a detailed understanding of the seawater intrusion dynamics and a more accurate correlation with environmental and anthropogenic causes, it would be desirable a rigorous monitoring activity of all the levels constituting the multilayer coastal aguifer, through the use of well-made boreholes with known technical features and available for deep measurements.

it could be useful for the local institutions to take in account the arrangement of some monitoring points for the zones identified as the highest sensitive ones, consisting of well executed wells with separate screens on each aquifer levels. This would enable to register in continuous the logs of some of the most important parameters characterizing the groundwater evolution, like SWL, EC, T, TDS, pH, Cl.

Seawater intrusion monitoring